НАБЛЮДЕНИЕ И ВИДИМОСТЬ

 

Профессор
В.В. Шаронов


II. УСЛОВИЯ И СПОСОБЫ НАБЛЮДЕНИЯ ДАЛЕКИХ ПРЕДМЕТОВ

Кругозор места наблюдения

Обозревать далеко расположенную местность можно не с каждого пункта. Очень часто окружающие нас близкие предметы (дома, деревья, холмы) заслоняют собой горизонт.
Часть территории, которую можно просматривать с какого-нибудь места, принято называть кругозором этого пункта. Если близкие предметы загораживают горизонт и поэтому вдаль смотреть нельзя, то говорят, что кругозор очень мал. В некоторых случаях, как, например, в лесу, в густом кустарнике, среди тесно расположенных построек, кругозор может ограничиваться немногими десятками метров.
Для наблюдения за противником чаще всего нужно смотреть вдаль, и поэтому для наблюдательных пунктов (НП) стараются выбирать пункты с хорошим, широким кругозором.
Чтобы окружающие предметы не мешали видеть, нужно расположиться выше их. Поэтому открытым кругозором чаще всего отличаются позиции, расположенные достаточно высоко. Если какой-нибудь пункт находится выше других, то говорят, что он "командует" над ними. Таким образом, хороший кругозор во все стороны может быть достигнут тогда, когда пункт наблюдения находится в точке, которая командует над окружающей местностью (рис. 3).

Вершины гор, холмов и других возвышенностей являются пунктами, с которых обычно открывается широкий вид на окружающую низменность. На равнине, где местность плоская, наилучший кругозор получается при подъеме на искусственные сооружения и постройки. С крыши высокого дома, с вышки завода, с колокольни почти всегда можно обозревать очень далекие части ландшафта. Если нет подходящих построек, то иногда сооружают специальные наблюдательные вышки.
Еще в глубокую старину на вершинах холмов и крутых обрывах воздвигали специальные дозорные башни и с них следили за окрестностью, чтобы заблаговременно заметить приближение неприятельского войска и не быть застигнутыми врасплох. Отчасти с этой же целью сооружались башни в старинных крепостях и замках. В древней Руси дозорными вышками служили колокольни церквей, в Средней Азии - минареты мечетей.
В наше время специальные вышки для наблюдения очень распространены. Часто среди лесов и полей нашей страны попадаются бревенчатые вышки, или "маяки". Это либо геодезические "сигналы", с которых ведут наблюдения при съемке местности, либо посты пожарной лесной охраны, с которых в засуху следят за лесом и замечают возникающие лесные пожары.
Высота всяких наземных сооружений, естественно, ограничена. Чтобы подняться над землей еще выше и этим еще больше расширить свой кругозор, пользуются летательными средствами. Уже в годы первой мировой войны для наблюдения широко применяли привязные змейковые аэростаты (так называемые "колбасы"). В корзине аэростата сидел наблюдатель, который мог подниматься на высоту 1000 м и более, часами оставаться в воздухе и следить за обширной территорией. Но аэростат слишком уязвимая цель для противника: его легко сбить как с земли, так и с воздуха. Поэтому наилучшим средством для проведения разведки следует считать самолет. Способный подниматься на большую высоту, двигаться с большой скоростью над территорией противника, уходить от преследования и активно отражать нападение неприятельских воздушных сил, он позволяет не только вести наблюдение над своей территорией, но и производить во время войны глубокую разведку в тылу неприятеля. При этом визуальное наблюдение часто дополняется фотографированием изучаемой местности, так называемой аэрофотосъемкой.

Дальность открытия

Пусть наблюдатель находится на совершенно открытом и ровном месте, например, на берегу моря или в степи. Поблизости никаких крупных предметов нет, горизонт ничем не загорожен. Какое пространство сможет обозревать наблюдатель в этом случае? Где и чем будет ограничен его кругозор?
Каждому известно, что в этом случае границей кругозора будет линия горизонта, т. е. та черта, на которой небо как будто сходится с землей.
Что же представляет собой этот горизонт? Здесь надо вспомнить уроки географии. Земля кругла, и поэтому ее поверхность везде выпуклая. Вот эта кривизна, эта выпуклость поверхности Земли и ограничивает кругозор на открытом месте.
Пусть наблюдатель стоит в точке Н (рис. 4). Проведем линию НГ, которая касается шаровидной поверхности земли в точке Г. Очевидно, что та часть земли, которая к наблюдателю ближе, чем Г, будет видна; что же касается земной поверхности, лежащей дальше Г, например, точка В, то ее видно не будет: ее загородит выпуклость земли между Я и В. Проведем круг через точку Г с центром у подножия наблюдателя. По этому кругу для наблюдателя и лежит его видимый горизонт, т. е. граница земли и неба. Заметьте, что от наблюдателя этот горизонт виден не на перпендикуляре к отвесу, а несколько книзу.

Из чертежа легко понять, что чем выше поднимается наблюдатель над поверхностью земли, тем дальше от него отодвинется точка касания Г и, следовательно, тем шире будет его кругозор. Например, если наблюдатель спустится с верхушки башни Н на нижнюю площадку, то он сможет видеть землю только до точки, которая гораздо ближе точки Г.
Значит, даже и тогда, когда ничто не заслоняет горизонта, подъем кверху расширяет кругозор и позволяет видеть дальше. Следовательно, и в совсем открытых местах выгодно выбирать для пункта наблюдения возможно более высокую точку. Математическое изучение вопроса показывает1: для того, чтобы горизонт расширился в два раза, надо подняться на высоту в 2х2=4 раза большую; чтобы расширить горизонт в три раза, в 3х3=9 раз большую и т. д. Иначе говоря, чтобы горизонт отодвинулся в N раз дальше, надо подняться в N2 раз выше.

В таблице 1 дается расстояние видимого горизонта от пункта наблюдения при подъемах наблюдателя на разные высоты. Приведенные здесь цифры - это граница, до которой можно обозревать самую поверхность земли. Если же речь идет о наблюдении высокого предмета, как, например, мачты корабля К, изображенной на рис. 4, то она будет видна значительно дальше, так как ее верхушка будет выдаваться над линией видимого горизонта.

Расстояние, начиная с которого какой-нибудь предмет, например, гора, башня, маяк, корабль, становится видимым из-за горизонта, называется дальностью открытия. (Иногда его называют также "дальностью видимости", но это неудобно и может повести к путанице, так как дальностью видимости принято называть расстояние, на котором предмет становится видимым в тумане.) Это тот предел, дальше которого увидеть этот предмет с данного пункта нельзя ни при каких условиях.
Дальность открытия имеет большое практическое значение, особенно в море. Ее легко рассчитывать, пользуясь таблицей дальности горизонта. Дело в том, что дальность открытия равна дальности горизонта для пункта наблюдения плюс дальность открытия для верхушки наблюдаемого предмета.

Приведем пример такого расчета. Наблюдатель стоит на прибрежном обрыве на высоте 100 м над уровнем моря и ожидает появления из-за горизонта корабля, мачты которого имеют высоту 15 м. На какое расстояние должен подойти корабль, чтобы наблюдатель мог его заметить? По таблице дальность горизонта для пункта наблюдения будет 38 км, а для мачты корабля - 15 км. Дальность открытия равна сумме этих чисел: 38+15=53. Значит, мачта корабля появится на горизонте, когда корабль подойдет к пункту наблюдения на 53 км.

Кажущиеся размеры предметов

Если понемногу удаляться от какого-нибудь предмета, то видимость его будет постепенно ухудшаться, различные детали будут пропадать одна за другой, и рассматривать объект будет все труднее и труднее. Если предмет мал, то на известном расстоянии его совсем нельзя будет различить, даже в том случае, если его ничто не загораживает и воздух совершенно прозрачен.
Например, с расстояния в 2 м можно разглядеть малейшие морщинки на лице человека, которых с расстояния в 10 м уже не видно. На расстоянии 50-100 м человека не всегда можно узнать, при удалении на 1000 м трудно определить его пол, возраст и форму одежды; с расстояния 5 км его вообще не увидишь. Рассматривать предмет издалека трудно вследствие того, что чем дальше предмет, тем меньше его видимые, кажущиеся размеры.
Проведем из глаза наблюдателя две прямые линии к краям предмета (рис. 5). Составленный ими угол называется угловым поперечником предмета. Его выражают в обычных для угла мерах - градусах (°), минутах (') или секундах (") и их десятых.

Чем дальше предмет, тем меньше его угловой поперечник. Для того, чтобы найти угловой поперечник предмета, выраженный в градусах, надо взять его действительный, или линейный, поперечник и разделить на расстояние, выраженное в тех же мерах длины, а то, что получится, умножить на число 57,3. Таким образом:

Чтобы получить угловой размер в минутах, надо вместо 57,3 взять множитель 3438, а если надо получить секунды, то - 206265.
Приведем пример. Солдат имеет рост 162 см. Под каким углом будет видна его фигура с расстояния в 2 км? Замечая, что 2 км составляют -200000 см, вычисляем:

В таблице 2 даются угловые размеры предмета в зависимости от его линейных размеров и расстояния.

Принято считать, что предмет можно увидеть лишь в том случае, если его угловой поперечник не меньше 1'. Впрочем, форма и особенно яркость предмета могут сильно изменять эту границу.

Острота зрения

Способность видеть далекие предметы у разных людей не одинакова. Один прекрасно видит мельчайшие детали удаленной части ландшафта, другой плохо различает подробности даже сравнительно близко расположенных предметов.
Способность зрения различать тонкие, мелкие по угловым размерам детали называется остротой зрения, или разрешающей способностью. Для людей, которым по роду своей деятельности приходится следить за удаленными частями ландшафта, например для летчиков, моряков, шоферов, паровозных машинистов, острое зрение совершенно необходимо. На войне оно является ценнейшим качеством каждого солдата. Человек с плохим зрением не может хорошо целиться, вести наблюдение за удаленным противником, он плох в разведке.
Как же измерить остроту зрения? Для этого разработаны весьма точные приемы.
Нарисуем на белом картоне два черных квадрата с узким белым промежутком между ними и хорошо осветим этот картон. Вблизи ясно видны и квадраты и этот промежуток. Если начать постепенно отходить от рисунка, то угол, под которым виден промежуток между квадратами, будет уменьшаться, и различать рисунок будет все труднее и труднее. При достаточном удалении белая полоса между черными квадратами совсем исчезнет, и наблюдатель вместо двух отдельных квадратов увидит одну черную точку на белом фоне. Человек с острым зрением может заметить два квадрата с большего расстояния, чем тот, у кого зрение менее острое. Поэтому угловая ширина промежутка, начиная с которой квадраты видны раздельно, может служить мерой остроты.
Найдено, что для человека с нормальным зрением; наименьшая ширина промежутка, при которой два черных изображения видны раздельно, составляет 1'. Острота такого зрения принимается за единицу. Если удается увидеть как раздельные изображения при промежутке между ними в 0',5, то острота будет 2; если же объекты разделяются лишь при ширине промежутка в 2', то острота будет 1/2 и т. д. Таким образом, для того, чтобы измерить остроту зрения, надо найти наименьшую угловую ширину промежутка, при которой два изображения видны как раздельные, и на нее разделить единицу:

Для испытания остроты зрения применяют рисунки разного очертания. Читатель, вероятно, знает таблицы с буквами разной величины, которыми проверяют зрение врачи-глазники (окулисты). На такой таблице нормальный глаз с остротой, равной единице, разбирает буквы, толщина черных линий которых равна 1'. Более острый глаз может разбирать буквы и мельче, менее острый - лишь те буквы, которые крупнее. Разные буквы имеют неодинаковые очертания, и поэтому некоторые из них разбирать легче, а другие труднее. Этот недостаток устраняется, если пользоваться специальными "пробами", где наблюдателю показывают одинаковые фигуры, повернутые различным образом. Некоторые из таких проб изображены на рис. 6.


Рис. 6. Образцы фигур для испытания остроты зрения.
Слева - две черные полосы, наблюдается исчезновение белого промежутка между ними. Посредине - кольцо с разрывом, направление этого разрыва должен указать испытуемый. Справа - в виде буквы Е, поворот которой указывает наблюдатель.

Близорукость и дальнозоркость

По своему устройству глаз очень похож на фотографический аппарат. Он тоже представляет собой камеру, правда, круглой формы, на дне которой получается изображение наблюдаемых предметов (рис. 7). Изнутри глазное яблоко устлано особой тонкой пленкой, или кожицей, называемой сетчатой оболочкой, или ретиной. Она вся усеяна громадным количеством очень мелких телец, каждое из которых соединено тонкой ниточкой нерва с центральным зрительным нервом и далее с мозгом. Одни из этих телец короткие и называются колбочками, другие же, продолговатые, называются палочками. Колбочки и палочки представляют собой орган нашего тела, воспринимающий свет; в них под действием лучей получается особое раздражение, которое по нервам, как по проводам, передается в мозг и воспринимается сознанием, как ощущение света.
Световая картина, воспринимаемая нашим зрением, составляется из множества отдельных точек - раздражений колбочек и палочек. В этом глаз тоже похож на фотографию: там изображение на снимке тоже слагается из множества мельчайших черных точек - зерен серебра.
Роль объектива для глаза играет отчасти студенистая жидкость, наполняющая глазное яблоко, отчасти прозрачное тело, расположенное непосредственно за зрачком и называемое хрусталиком. По своей форме хрусталик напоминает двояковыпуклое стекло, или линзу, но от стекла отличается тем, что состоит из мягкого и упругого вещества, отдаленно напоминающего студень.
Для того, чтобы получить хороший, отчетливый снимок, фотографический аппарат надо сначала "навести на фокус". Для этого заднюю рамку, которая несет фотографическую пластинку, передвигают взад и вперед, пока не найдут такое расстояние от объектива, на котором изображение на матовом стекле, вставленном в рамку, будет наиболее отчетливым. Глаз не может раздвигаться и сдвигаться, а потому задняя стенка глазного яблока не может приближаться или удаляться от хрусталика. Между тем, для разглядывания далеких и близких предметов фокусировка должна быть разная. В глазу это достигается изменением формы хрусталика. Он заключен в особую кольцевую мышцу. Когда мы разглядываем близкие предметы, то эта мышца сжимается и надавливает на хрусталик, который от этого выпячивается, становится более выпуклым, и поэтому фокус его делается короче. Когда взор переводится на далекие предметы, то мышца ослабляется, хрусталик растягивается, становится более плоским и длиннофокусным. Этот процесс, который происходит непроизвольно, называется аккомодацией.
Нормальный здоровый глаз устроен так, что благодаря аккомодации он может с полной резкостью видеть предметы, начиная с расстояния в 15-20 см и до сильно удаленных, какими можно считать Луну, звезды и другие небесные светила.
У некоторых людей глаз имеет неправильное строение. Задняя стенка глазного яблока, на которой должно получаться резкое изображение разглядываемого предмета, расположена от хрусталика либо ближе, чем следует, либо слишком далеко.
Если внутренняя поверхность глаза чересчур сдвинута вперед, то как бы хрусталик ни напрягался, изображение близких предметов получается за нею, и поэтому на светочувствительной поверхности глаза изображение выйдет неясным, размытым. Такой глаз видит близкие предметы размазанными, расплывчатыми, - недостаток зрения, называемый дальнозоркостью. Человеку, страдающему таким недостатком, трудно читать, писать, разбираться в мелких предметах, хотя вдаль он видит отлично. Для устранения затруднений, связанных с дальнозоркостью, приходится надевать очки с выпуклыми стеклами. Если к хрусталику и другим оптическим частям глаза добавить выпуклое стекло, то фокусное расстояние делается короче. От этого изображение рассматриваемых предметов приближается к хрусталику и попадает на сетчатую оболочку.
Если сетчатая оболочка расположена от хрусталика дальше, чем полагается, то изображения далеких предметов получаются перед ней, а не на ней. Глаз, страдающий таким недостатком, видит далекие предметы очень неясно и размыто. Против такого недостатка, называемого близорукостью, помогают очки с вогнутыми стеклами. При таких стеклах фокусное расстояние становится длиннее, и изображение далеких предметов, отодвигаясь от хрусталика, попадает на сетчатую оболочку.

Оптические приборы для наблюдения на далекие расстояния

Если предмет виден плохо из-за того, что его угловые размеры слишком малы, то его можно рассмотреть лучше, приблизившись к нему. Очень часто сделать это невозможно, тогда остается только одно: рассматривать предмет через такой оптический прибор, который показывает его в увеличенном виде. Прибор, позволяющий успешно наблюдать далекие предметы, изобрели давно, более трехсот лет назад. Это - зрительная труба, или телескоп.
Всякая зрительная труба в основном состоит из двух частей: из большого двояковыпуклого стекла (линзы) на переднем, обращенном к предмету конце (рис. 8), которое называется объективом, и второго, меньшего по размерам, двояковыпуклого стекла, к которому прикладывают глаз и которое называется окуляром. Если труба направлена на сильно удаленный предмет, например, на далекий фонарь, то лучи подходят к объективу параллельным пучком. При прохождении через объектив они преломляются, после чего сходятся конусом, и в точке их пересечения, называемой фокусом, получается изображение фонаря в виде светлой точки. Это изображение разглядывают через окуляр, действующий наподобие лупы, вследствие чего оно сильно увеличивается и кажется гораздо больше.
В современных телескопах объектив и окуляр составляют из нескольких стекол различной выпуклости, чем достигаются гораздо более четкие и резкие изображения. Кроме того, в трубе, устроенной так, как это показано на рис. 8, все предметы будут видны в перевернутом виде. Видеть людей, бегущих головой вниз по висящей вверху над небом земле, нам было бы непривычно и неудобно, а поэтому в трубы, предназначенные для наблюдений за земными предметами, вставляются особые дополнительные стекла, или призмы, которые поворачивают изображение в нормальное положение.

Прямое назначение зрительной трубы - показывать удаленный предмет в увеличенном виде. Телескоп увеличивает угловые размеры и этим как бы приближает предмет к наблюдателю. Если труба увеличивает в 10 раз, то это значит, что предмет на расстоянии в 10 км будет виден под таким же углом, под каким невооруженным глазом он виден с расстояния 1 км. Астрономы, которым приходится наблюдать очень удаленные объекты - Луну, планеты, звезды, применяют огромные телескопы, диаметр которых равен 1 м и более, а длина доходит до 10-20 м. Такой телескоп может дать увеличение более чем в 1000 раз. Для рассматривания земных предметов столь сильное увеличение в большинстве случаев совершенно бесполезно.
В армии основным прибором для наблюдения считается полевой бинокль. Бинокль - это два маленьких телескопа, скрепленных вместе (рис. 9). Он позволяет смотреть двумя глазами сразу, что, конечно, гораздо удобнее, чем наблюдение одним глазом при одиночной зрительной трубе. В каждой половинке бинокля, как и во всяком телескопе, есть переднее стекло - объектив - и задние стекла, составляющие окуляр. Между ними расположена коробка, заключающая призмы, посредством которых поворачивается изображение. Бинокль такого устройства называется призматическим.
Наиболее распространенный тип призматического бинокля - шестикратный, т. е. дающий увеличение в 6 раз. Применяются также бинокли с увеличением в 4, 8 и 10 раз.

Помимо биноклей, в военном деле в некоторых случаях применяются зрительные трубы с увеличением от 10 до 50 раз, а кроме того, перископы.
Перископ - это сравнительно длинная труба, которая предназначена для наблюдений из-за укрытия (рис. 10). Солдат, ведущий наблюдение перископом, сам остается в окопе, выставляя наружу лишь верхнюю часть прибора, несущую объектив. Это не только предохраняет наблюдателя от огня противника, но и облегчает маскировку, поскольку маленький кончик трубы замаскировать гораздо легче, чем всю фигуру человека. Длинные перископы применяются на подводных лодках. Когда нужно вести наблюдение скрытно от противника, лодка остается под водой, выставляя над поверхностью моря лишь едва заметный конец перископа.
У читателя может возникнуть вопрос, почему в военном деле применяются только приборы со сравнительно слабым увеличением, не превосходящим 15-20-кратное? Ведь не трудно сделать телескоп с увеличением в 100-200 раз и даже больше.
Есть ряд причин, затрудняющих в походе применение зрительных труб с большим увеличением. Во-первых, чем сильнее увеличение, тем меньше поле зрения прибора, т.е. тот участок панорамы, который в нем виден. Во-вторых, при сильном увеличении всякая тряска, дрожание трубы затрудняют наблюдение; поэтому телескоп с сильным увеличением нельзя держать в руках, а надо класть на специальную подставку, устроенную так, что трубу можно легко и плавно поворачивать в разные стороны. Но самым главным препятствием является атмосфера. Воздух у земной поверхности никогда не бывает спокоен: он колеблется, волнуется, дрожит. Сквозь этот движущийся воздух мы и смотрим на далекие части ландшафта. От этого изображения далеких предметов портятся: форма предметов искажается, неподвижный в действительности объект все время шевелится и меняет свои очертания, так что разобрать его детали нет никакой возможности. Чем больше увеличение, тем сильнее все эти помехи, тем заметнее искажения, вызванные колебаниями воздуха. Это приводит к тому, что применение чрезмерно сильно, увеличивающих приборов при наблюдении вдоль земной поверхности оказывается бесполезным.